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Abstract 
Previous work, presented in SPE 106817, “Evaluation of the Potential for Gas and CO2 Leakage along Wellbores”, described 
a method to predict the potential for wellbore leakage which primarily occurs in the shallow areas of a wellbore.  

The work presented here focuses on the potential for leakage to occur from the deep regions of a wellbore, particularly 
from viable oil reservoirs. The potential for wellbore leakage where CO2 emhanced oil recovery (EOR) or sequestration is or 
may be conducted is specifically investigated. 

The Alberta Energy Resources Conservation Board collects and maintains data regarding cement types used in primary 
cementing of casing strings, stimulation information and abandonment data. These data were used to determine the potential 
for deep wellbore leakage in the presence of CO2. This deep wellbore leakage potential is then coupled with shallow wellbore 
leakage potential to predict which wells may leak to other reservoirs, potable groundwater aquifers or to the atmosphere in a 
CO2 sequestration or EOR project.  

Cements with additives such as bentonite have been shown to be particularly susceptible to CO2 attack. Wells were 
screened for cement blends placed in the deeper sections of the wellbore during primary cementing. This information is 
useful in predicting if a wellbore will remain leak free if CO2 is placed in the reservoir and the wellbore is contacted. 

The stimulation method was evaluated to determine if injected CO2 may break through to existing wellbores prior to full 
reservoir sweep, thus decreasing the time that the wellbore could remain leak free. Stimulations such as hydraulic fracture, 
perforating and acidizing with pressure were deemed to increase the likelihood that wellbores would leak due to cement 
sheath cracking coupled with CO2 attack of cement and casing.  

The abandonment method was also evaluated. In Alberta the primary form of zonal abandonment utilizes a mechanical 
bridge plug capped with cement. The bridge plug material is expected to fail in the presence of CO2 due to CO2 attack on 
elastomers and cast iron.  

Two large field evaluations are presented as case studies. 
 

Introduction 
Several client studies have been conducted to date in Alberta, Canada, to determine factors which 
may affect wellbore leakage. The findings of these studies were presented previously (Bachu and 
Watson, 2006; Watson and Bachu, 2007). These papers, particularly SPE 106817, presented an 
analysis of the factors that affect the leakage potential in the shallow part of a well, and a 
decision-tree type model which enables ranking of a well’s potential to leak based on factors 
determined in the client studies. 

The original ranking system generally focused on leaks from the shallower regions of the well 
(Figure 1). These leaks typically manifest themselves at surface as annular pressure (surface 
casing vent flow-SCVF, known also as sustained casing pressure) or soil gas migration. This 
ranking system did not take into account the potential for a native or injected fluid or gas to 
create or increase the potential for a well to leak. 

In Alberta several reservoirs are currently being evaluated for CO2 enhanced oil recovery 
(EOR), while more than 30 depleted oil and gas reservoirs and deep saline aquifers are used for 
acid gas (CO2 and H2S) disposal. In an attempt to determine the potential for a well penetrating 
one of these reservoirs or aquifers to leak CO2 or acid gas from the target reservoir, a computer-
based tool was developed. This tool uses the data available in electronic form from the Alberta 

Figure 1: Shallow and deep 
areas of the wellbore.
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Energy Resources Conservation Board (ERCB) to create a score for each wellbore. This score indicates the leakage potential 
from both the shallow and deep regions of the wellbore as depicted in Figure 1. Data were also compiled to allow for the 
future evaluation of possible consequences of a leaking wellbore. 

The shallow leakage factors have been determined by analysing known leakage in the field and determining the most 
prevalent factors that lead to annular pressure and soil gas migration (Bachu and Watson, 2006; Watson and Bachu, 2007). 
The deep leakage factors, however, have been determined from theoretical deduction and laboratory results.  

 
Shallow Leakage 
Factors previously determined to have an effect on shallow wellbore leakage (Bachu and Watson, 2006; Watson and Bachu, 
2007) were assigned values which reflected the influence that a particular factor has on shallow wellbore leakage. Table 1 
indicates these factors, the criteria and default values assigned based on these criteria. These values are then multiplied to 
determine a well’s Shallow Leakage Potential (SLP) score. Table 2 summarizes scores into general leakage-potential 
categories. 

 
Table 2: Shallow leak potential. 
 
Shallow Leak Potential (SLP) Score 
Low <50 
Medium 50-200 
High 200-400 
Extreme >400 

 
 

 
 
 
 
 
 

 
In general the analysis is based on the potential for a well to have a leakage pathway along the wellbore and does not 

depend on the fluid or gas source that may be leaking. 
 

Deep Wellbore Leakage 
Three factors were used to evaluate the Deep Leakage Potential (DLP) for a wellbore in CO2 sequestration, acid gas disposal 
and CO2-EOR. Deep leakage was evaluated based on the presence of CO2 or acid gas and the impact this acidic environment 
would have on wellbore construction and abandonment materials such as cement, steel and elastomers. Table 3 indicates the 
factors, criteria and assigned values used to determine the possibility that deep leakage would occur. These factors are then 
multiplied to obtain the well’s overall DLP. Table 4 summarizes the product score values into general categories. 

 
Table 4: Deep leak potential. 
 
Deep Leak Potential (DLP) Score 
Low <2 
Medium 2-6 
High 6-10 
Extreme >10 

 
 
 

 
 

 
Cement Type 

Several studies have been conducted to determine the effect of CO2 on the quality of cements used in wellbore 
construction (Browning, 1984; Onan, 1984; Bruckdorfer, 1986; Krilov et al., 2000; Duguid et al., 2004; Kutchko et al., 
2007). Most of these studies indicate that cement will not withstand CO2 attack and will fail to provide a seal in the 
casing/hole annulus when CO2 is introduced (Nelson and Guillot, 2006a). Recent laboratory work suggests, however, that 
cements with low free water ratios may not be as susceptible to CO2 attack due to the formation of an impermeable barrier on 
the cement sheath that halts further deterioration as shown in Figures 2 and 3 (Kutchko et al., 2007a). These studies also 
suggest that the inclusion of additives, such as bentonite, which increase the free water ratio, increases the potential for 

Table 1: Shallow leakage factors. 
 
Factor Criterion Meets 

Criterion 
Value 

Default 
Value 

Spud Date 1965-1990 3 1 
Abandonment Date <1995 5 1 
Surface Casing Size �244.5 mm 1.5 1 
Well Type Cased 8 1 
Geographic Location Special Test 

Area 
3 1 

Well Total Depth >2500 m 1.5 1 
Well Deviation 1.2-1.8 1.5 1 
Cement to Surface No 5 1 
Cement to Surface Unknown 4 1 
Additional Plug No 2 1 
Additional Plug Unknown 1.5 1 

Table 3: Deep leakage factors. 
 
Factor Criterion Meets 

Criterion 
Value 

Default 
Value 

Fracture count =1 1.5 1 
Fracture count >1 2 1 
Acid count=1 1.1 1 
Acid  count=2 1.2 1 
Acid count>2 1.5 1 
Perforations count>1 2 1 
Abandonment type Bridge Plug 3 1 
Abandonment type Not abandoned 2 1 
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cement break down in the presence of CO2 (Kutchko et al., 2007a). Since no such studies exist for the effect of acid gas on 
well cements, it is assumed that the conclusions and results for CO2 would apply to acid gas as well since the reactions are 
due to the acidic nature of the fluid (Kutchko et al., 2007a). 

 
 
  
 
 

 

    
 
 
Bentonite, commonly referred to as gel, is the most 

common additive to cement. This additive is used as an 
extender to increase the yield of the cement, decrease the 
cement density and decrease the fluid loss (Nelson and Guillot, 
2006b). The addition of bentonite increases the set cement 
porosity, increasing the cement susceptibility to corrosion due 
to acidic formation fluids (Nelson and Guillot, 2006a). Cement 
blends which include bentonite are often used as “filler” 
cements to reduce the cost of cementing and the hydrostatic 
pressure applied to the producing formation or weak 
formations. Other additives, such as gypsum, which are highly 
acid-soluble, are also expected to deteriorate rapidly in the 
presence of CO2 or acid gas. 

Inert additives such as fly ash, silicate (sand) and nitrogen 
(foamed cement) do not increase the free water ratio and are 
assumed for this study to have a lesser effect on the 
deterioration of cement in the presence of CO2 (Nelson and 
Guillot, 2006a). 

The data, provided by the ERCB, include information 
regarding the cement types used in the cementing of the 
production casing. Table 5 itemizes the cement types found in 
the ERCB electronic database and the values assigned for the 
purpose of assessing a well’s potential to be adversely affected 
by CO2 or acid gas and potentially cause leakage. Often, several 
different types of cement may be used to cement the wellbore. 
Generally, better quality cement, designed for the well purpose, 
depth, temperature and reservoir conditions, is run across the 
zone or completion interval. Filler type cements are often run in 
the shallower areas of the wellbore. The ERCB data indicate 
these different cement types in a wellbore, as well as where 
they are placed by providing the sequence that the cement was 

 
Table 5: Cement types and values. 

 
Cement Type 
 

Assigned 
Value 

Description 
 

1:1 POZ MIX 1 Cement and fly ash 

1:1:# POZ 
3 Cement, fly ash and various 

quantities of bentonite 

BLACKGOLD 1 Unknown 

CAP (NEAT) 
1 Cap pumped on top of foam 

cement, not applicable. 
CLASS X NEAT 1 Various neat cements 

FILL ECP 
1 Cement to fill annular packer, 

not applicable 

FOAMED 
1 Cement foamed with 

nitrogen 

G + # PC SALT 
1 Cement with various percent 

salt additive 

G + # PC SAND 
1 Cement with various percent 

silica sand additive 

GPSL/GPCEM/THX 3 Gypsum and gel additives 

LIGHT WEIGHT 
3 Assumed gel additive to 

reduce density 

SELF STRESS 
3 No cement, hole allowed to 

slough in on casing 

SLAG 
1 Blast furnace slag, reduces 

cement porosity 

SLOTTED LINER 3 No cement 

SLURRY 6D 1 Unknown 

TAPERED CASING 3 No cement 
TH CEM/CEM 
FNDU 

1 Thermal cement, usually 
sand or silica additive 

UNCEM 
CSG/LINER 

3 No cement 

Figure 2: Kinetic results for the penetration 
rate of CO2 -saturated brine of the cement. 
(Kutchko et al., 2007b). (Graph courtesy of B. 
Kutchko, U.S. Department of Energy.) 

Figure 3: SEM-BSE image of Class H neat cement cured 
for 28 days.  The CaCO3(s) is forming a barrier to further 
CO2 infiltration (Kutchko et al., 2007a). (Photo courtesy of 
B. Kutchko, U.S. Department of Energy). 
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pumped into the well. Cement data for wells spud prior to 1986 are sparse, however most wells spud after 1986 have detailed 
information regarding cement type and placement. From this information it is possible to determine which cement type is in 
the deepest portions of the wellbore. The cement type recorded as being at the bottom of the well is the cement type that this 
evaluation is based on.  

 
Stimulation and Perforations 

The ERCB records information regarding most stimulation treatments to perforations or producing intervals in wellbores, 
as well as the number of completed intervals in the wellbore. Two types of treatments and perforating are anticipated to have 
potential effects on long term wellbore integrity due to excessive pressures (Watson et al., 2002), as shown in Figure 4, or 
chemical reactions. In this study hydraulic fracturing and acidizing with pressure were classified as stimulation methods that 

could have a negative impact on wellbore integrity. Carbon dioxide or acid gas 
may migrate through cracks in the cement created by stimulation or 
perforating. These acidic fluids may increase and hasten the leakage by further 
deteriorating the cement sheath or corroding the steel casing. 

Hydraulic fracturing breaks the reservoir rock using a viscous fluid, high 
pump rates and high pressures. The reservoir rock is fractured and the 
fractures filled with a propping agent, usually sand, that creates a highly 
porous and permeable flow path to the wellbore. Acidizing dissolves wellbore 
scales, removes near wellbore damage and dissolves reservoir rock. These 
stimulations can remove near-wellbore damage caused by drilling activity and 
increase the flow potential near the wellbore. 

In the situation where CO2, acid gas and/or water is used for reservoir 
EOR, it is anticipated that CO2 or the acid gas may break through to these 
reservoir fractures preferentially, bypassing unaltered reservoir rock due to the 
higher permeability of the fracture (Marsters, 2007). As well, where wells 
have been abandoned due to depletion or produced for long periods of time, 
the localized reservoir pressure around these wells may facilitate the flow of 
flood fluids to migrate towards these low pressure areas. Multiple completions 
or perforated intervals provide a higher potential for cross flow between 
discrete geologic zones within the wellbore itself. 

The data were analysed to determine if a particular well was stimulated by 
fracturing, acidizing or if it had multiple completions. Fracturing has been given a higher risk score due to higher treatment 
pressures and deeper penetration into the reservoir, typically achieved by fracturing. In comparison, acidizing and perforating 
are usually near-wellbore treatments. Both fracturing and acid treatments were counted for the individual wellbores. This 
count information is used based on the assumption that the more times a well is stimulated, the higher the chance that casing, 
cement and/or cap rock systems may be damaged. The number of completions is also counted and any well that has multiple 
completed intervals was assigned a higher value due to the increased potential of crossflow. 

 
Zonal Abandonment Method 

In Alberta the ERCB allows three options for zonal abandonment of cased wells. The methods, as depicted in Figure 5 
are: a cement plug that extends a minimum of 15 meters above and below the perforated interval, a cement squeeze through 
the perforations with or without a retainer, or, the most commonly used method, a mechanical bridge plug capped with 8 
meters of cement (ERCB 2007). 

 
Figure 5: Regulatory approved zonal abandonment methods in Alberta, Canada. 

 
 
 

                                       

Figure 4: Cement sheath failure and 
resulting cracks developed from pressure 
cycling the internal casing (Watson et al., 
2002). (Photo courtesy of Halliburton 
Energy Services). 

Cement plug set across 
perforations. 

Cement squeeze with 
retainer to perforations.

Bridge plug capped with 8 
meters of cement. 
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This factor identifies the abandonment method for a particular well and assigns a value based on these criteria. It is 
anticipated that the bridge plug abandonment method will have a shorter life than other methods due to mechanical failure, 
change of reservoir pressure due to the injection of CO2, acid gas and/or water, or a change in the gas/fluid chemistry below 
the bridge plug (Schremp and Roberson, 1975). Bridge plugs are typically made of cast iron and an elastomer sealing unit as 
shown in Figure 6. Both iron and the typical nitrile elastomers used are subject to CO2 or acid gas attack that can lead to seal 
failure (Schremp and Roberson, 1975).  

Cement caps placed above bridge plugs are typically dump-
bailed into place. Cement caps evaluated in an earlier client study 
were found intact in only 50% of the wells investigated. This 
corresponds to laboratory findings that indicate dump-bailing of 
cement may be ineffective in providing adequate seals (White et al., 
1992). Based on these findings, the ability of dump-bailed cement 
plugs to maintain an effective seal above the bridge plug is 
considered negligible for this study.  

Zonal abandonment type had originally been included in the 
potential for shallow wellbore leakage. For this study the zonal 
abandonment method has been evaluated as deep potential for 
leakage, because it has a direct effect on the potential for wells to 
leak from the CO2  sequestration or acid gas disposal formation up 
the inside of the production casing where it may impact all horizons 
in the wellbore.  

Wells that have not been cased are called drilled and abandoned. 
These wells have been left out of the analysis since records in 
Alberta indicate that the leakage occurrence rate is 0.5% of drilled and abandoned wells compared to 13% of cased 
abandoned wells (Bachu and Watson, 2006). Additionally, no data exist to determine the cement type in the cement plugs 
used to abandon uncased wells. It is assumed, based on field knowledge, that cement plugs typically consist of neat type 
cements, and these wells will therefore have a lower DLP. 

 
Case Studies 
The Pembina and Zama oil fields in Alberta (Figure 7) were evaluated using the previously described method. These fields 
are being considered for CO2 or acid-gas EOR, and pilots are currently being run in both. The results of the evaluation can be 
used to determine the overall leakage potential for existing wells in oil fields where CO2 or acid gas injection may be used for 

EOR and/or future sequestration. The information provided by this 
analysis can be used to target particular wells for further evaluation based 
on their individual DLP and SLP scores. Table 4 provides general 
information for comparison between the two oil fields and the potential 
for well leakage based on the predetermined factors.  

 
 
 
 Table 4: Field data and results summary. 

 Pembina Zama 

Number of cased wells 9860 607 

Number of wells drilled and abandoned 1050 106 

% of wells with cement data 40% 64% 

% of wells with high DLP cement score 28% 20% 

% of wells fractured 75% 2% 

% of wells acidized 47% 80% 

% of wells abandoned 12% 13% 

% of wells with multiple completions 11% 55% 

% of wells with extreme DLP 14% 28% 

% of wells with extreme SLP 7% 18% 

% of wells with extreme SLP and DLP 1.6% 4.3% 
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Figure 7: Map of Alberta, Canada, showing the 
location of the Pembina and Zama Fields in red. 

Figure 6: Bridge plug capped with 8 meters of cement 
with infiltrating CO2. 
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Pembina Field Wellbore Leakage Potential 
The Pembina Field, the largest oil field in Canada, was discovered in the early 1950’s with drilling continuing on until 

today. Wells in the field typically are drilled to a depth of approximately 1600-1800 m. The wells are generally completed 
and produced from the Cardium Formation which is a sandstone with an overlaying conglomerate and a thick shale caprock. 
In recent years some uphole potential has been realized. The wells are generally vertical with single completions. Wells that 
have been cased and completed are typically abandoned with a bridge plug set within 15 m of the perforated interval with 8 
m of cement dump-bailed on top. Generally, wells in the Pembina Field were stimulated by hydraulic fracturing and to a 
lesser extent by acidizing the completed interval. 

Historically, the primary cementing requirements have been 100 m above the Cardium Formation at 1400 m or the 
overlying Belly River Formation at an average depth of about 800 m (ERCB, 1990). Surface casing setting depth is at 
approximately 180 m. The base of groundwater protection varies between 200 and 600 m, with typical Base of Ground Water 
Protection (BGWP) at 470 m (Alberta Environment, 1995). Although there are wells with potentially 1200 m of uncemented 
casing in the Pembina Field, there are very few gas or oil bearing zones within the overlying horizons to leak to surface. 
External casing corrosion does not seem to be problematic in the area, with 1.3% of Pembina wells reporting casing failure 
compared to 1.1% province wide. 

The distribution of wells, by either DLP or SLP scores, for the Pembina Field is presented in Figures 8 and 9, 
respectively. This analysis gives an overall picture of the potential for well leakage and which area of the wellbores is most 
prone to leakage. Figures 10 and 11 indicate the geographic location of wells with extreme deep and shallow leakage 
potential in the Pembina Field, respectively. This information would be useful when determining the areas of an oil field that 
would be most desirable for CO2 EOR or sequestration, and gives some indication of the potential economic impact of 
wellbore remediation prior to injection of CO2 at the scoping stage. The well locations of a particular DLP or SLP score or 
range of score may be used to determine potential consequences by overlaying population density, ground water, surface 
water or other potential leak receptors. Individual factors, such as which wells are abandoned or have at risk cement types can 
also be analysed based on the nature of the proposed project. 
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Figure 10: Location of Pembina wells with extreme 
DLP shown in red against all field wells in black. 
The green grid indicates 6x6 miles/square. 

Figure 11: Location of Pembina wells with extreme SLP shown in 
red against all field wells in black. 
The green grid indicates 6x6 miles/square. 

Figure 8: Pembina Field DLP Score distribution. Figure 9: Pembina Field SLP Score distribution. 
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The analysis of shallow leakage potential in the Pembina Field indicates leakage potential similar to the reported 
provincial average of 6.1% (Bachu and Watson 2006), with only 7% of wells falling in the extreme categories. The analysis 
of the deep leakage potential indicates that wells are predominantly cemented with neat cements that pose the lowest risk for 
deterioration when in contact with CO2 compared to other common wellbore cements. The deep leakage analysis also 
indicates that fracture stimulation may create leakage pathways in the deep regions of the wellbore and that fracture 
stimulation is the main factor in DLP for the Pembina Field. Figures 10 and 11 also indicate that the potential for shallow 
well leakage (SLP) in the field may be of lesser concern and is not as widely distributed as the potential for deep well leakage 
(DLP). 

The low potential for leakage scores, however, may be underestimated if wellbore abandonment procedures do not 
change in the future. With only 12% of cased wells currently abandoned in the Pembina Field, the leakage scores may not 
reflect future leakage potential due to abandonment method.  

Cement type data are electronically available only for 40% of the wells. It was assumed that the unknown well cement 
types would be type neat and would, therefore, have a lower potential for deterioration due to CO2 attack. This assumption 
may underestimate the potential for deep well leakage. 

Based on the available information it appears as though wells in the Pembina Field could withstand project 
implementation of CO2 EOR or CO2 sequestration if wells abandoned in the future use a more robust downhole abandonment 
method than bridge plug capped with cement. Investigation to determine zonal isolation after stimulation in wells indicated as 
having extreme DLP would be beneficial in determining the actual effect of the stimulation on zonal isolation. More study is 
required to determine the durability of neat cement and bridge plugs to improve the confidence of these findings. 

 
Zama Field Wellbore Leakage Potential 

The Zama Field was discovered in the mid 1960’s. The productive zone is the carbonate reef Keg River Formation at an 
average depth of 1600 m. The wells are generally vertical with multiple completions. On average, each well has two 
completions, or perforated intervals, with several wells having five or more completions. Wells that have been cased and 
completed are typically abandoned with a bridge plug set within 15 m of the perforated interval and with 8 m of cement 
dump-bailed on top. Wells in the Zama Field were stimulated by acidizing the completed interval. Very few wells are 
hydraulically fractured. 

Historically, the cementing requirements have been 100 m above the Slave Point Formation, which overlays the Keg 
River formation, at an average depth of about 1200 m (ERCB, 1990). Surface casing setting depth is at approximately 275 m, 
however older wells have setting depths less than 200 m. The Base of Ground Water Protection varies between 75 and 400 
m, with the average BGWP at 250 m (Alberta Environment, 1995). Within the uncemented depths of the wellbores several 
productive intervals have been discovered since many of the wells were drilled. Overlying gas-bearing formations such as the 
Jean Marie and the Beaverhill Lake, may contribute to gas leaking to surface. The reported casing failures for the Zama Field 
are 6% of all wells compared to failures of 1.1% of wells in Alberta. These high numbers of casing failures may be explained 
by the exposure of casing to the Wabamum Group and Banff Formation which are limestones within the exposed casing 
depths. The presence of CaCO3 has an adverse effect on external casing corrosion and ultimately casing failure (Caswell, 
1988).   

The distribution of wells, by either DLP or SLP scores, for the Zama Field is presented in Figures 12 and 13, respectively. 
These score distributions indicate that deep leakage potential is quite prevalent within the Zama Field. Figure 14 and 15 
indicate the geographical location of wells with extreme leakage potential in the field. Because the Zama Field is made up of 
several hundred reefs, this information would be useful when determining which pool would be most desirable for CO2 EOR 
or sequestration and gives some indication of the potential economic impact of wellbore remediation prior to injection of CO2 
or acid gas at the scoping stage. Both deep and shallow leakage potentials are broadly distributed throughout the field. The 
deep leakage potential appears to have a denser distribution across the field. Although Figures 14 and 15 focus on extreme 
DLP and SLP scores, the distribution charts indicate that there are large numbers of wells in the high categories for both DLP 
and SLP. The well locations of a particular DLP or SLP score or range of score may be used to determine potential 
consequences by overlaying population density, ground water, surface water or other potential leak receptors. 
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Within this analysis the wells in the Zama Field show significant potential for leakage, both shallow, which is 

independent of fluid type, and deep, which may occur in the event that CO2 or acid gas is introduced to the historical 
producing formations.  

Previous work identified that approximately 6.1% of all cased wells in the province had shallow leakage in the form of 
surface casing vent flow (annular pressure) reported (Bachu and Watson 2006). Based on the analysis of the Zama Field, 
18% of the wells have extreme potential of shallow leakage. This result is expected since the reported incidence of surface 
casing vent flow, determined from ERCB data, within the Zama Field is 30% of cased wells, well above the provincial 
average. 

The potential for deep leakage shows that 28% of the wells in the Zama Field have an extreme deep leakage potential. 
This assessment for deep leakage potential is based on: 

1. Approximately 30% (based on known and extrapolated data) of the wells have cement in the deeper regions of 
the wellbore that may be susceptible to CO2 or acid gas attack because of the additives used. 

2. Eighty percent of wells are stimulated by acidizing, with 60% of the wells having multiple acid stimulations. 
These stimulations may reduce the near wellbore seal, thus affecting isolation, and may reduce the time for CO2 
or acid gas breakthrough to the wellbore. 

3. Fifty-five percent of the wells have multiple completions, increasing the potential for leakage between zones. 
4. Thirteen percent of wells have been abandoned with a bridge plug. The remainder of the wells have not yet been 

abandoned. The assigned zonal abandonment value of two for wells that have not yet been abandoned may be 
too high. In the future, if zonal abandonment practices change to some other, more robust system the assigned 
value for zonal abandonment could be reduced to one. 

Figure 14: Location of Zama wells with extreme DLP 
shown in red against all field wells in black. 
The bold green grid indicates 6x6 miles/square. 

Figure 12: Zama Field DLP Score distribution. Figure 13: Zama Field SLP Score distribution. 
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Figure 15: Location of Zama wells with extreme SLP 
shown in red against all field wells in black. 
The bold green grid indicates 6x6 miles/square. 
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Conclusion 
The development of a computer-based tool to compile and mine available regulatory data to determine the potential of a well 
to leak has created the ability to conduct a first-pass evaluation of large numbers of wellbores to determine their relative 
potential for leakage, both shallow and deep. The use of this tool will speed up the wellbore assessment process by zeroing in 
on potential problem wells which may require closer scrutiny prior to the implementation of a CO2 EOR, acid gas disposal or 
CO2 sequestration scheme. The tool can also be used in risk assessment analysis if potential consequences of leakage are 
overlain, such as population density, ground water information or the presence of H2S along the wellbore. The tool need not 
be specifically used to determine leakage in the presence of acid gas or CO2, but can also be used to evaluate the potential for 
other types of leakage such as annular pressure (surface casing vent flow, aka sustained casing pressure) or gas migration. 

Based on the findings of this study, careful well evaluation should be conducted to determine if wells in a particular CO2 
EOR or sequestration scheme are at risk for leakage. More study is required to determine the durability of cement and bridge 
plugs to improve the confidence of this evaluation. 
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